P-V-T Relations for Methane
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Measurements of the gas compressibility of methane were made in the region 0° to
350°, 16 to 400 atm., and 0.75 to 12.5 mole liter ', From these results, values were

derived for the compressibility factor Z

PV/RT; second, third, and fourth virial

coefficients B, C, and D, respectively, in the equation PV = RT (1 + B/V + C/V* +
DNV + ...); and parameters of the Beattie-Bridgeman and Benedict-Webb-Rubin

equations of state.

THE pressure-volume-temperature relations of methane
were determined as part of a continuing project of the U. S.
Bureau of Mines to investigate, as conclusively as possible,
the gaseous state properties of hydrocarbons, fluorocarbons,
and mixtures of hydrocarbons and fluorocarbons. The
literature on pure methane is quite extensive, with every
degree of quality represented. Several articles that report
noteworthy P-V.T data, but for which no purpose would
be served by comparing them in detail with present values
are given (15, 16, 19, 21).

Some of the best modern values for the gas compressi-
bility of methane, as reported by Michels and Nederbragt
(18) and Schamp, Mason, Richardson, and Altman (23),
cover the ranges 0° to 150° and 0.8 to 8.0 mole liter.”' The
new values, which cover the region 0° to 350°, 16 to 400
atm., and 0.75 to 12.5 mole liter ' with an accuracy and
precision comparable to that reported by Michels and
Nederbragt (I18), and Schamp and coworkers (23), were
obtained in order to provide data over wider ranges of
variables than were available in the past for deriving
intermolecular potential energy functions and closed equa-
tions of state. Also, additional P-V-T data on methane
were needed to complete a self-consistent set of data for
the methane-tetrafluoromethane system, to be reported in
future publication. Derived values of the compressibility
factors, virial coefficients, and parameters of two equations
of state are given. Correlations of the second, third, and
fourth virial coefficients of methane in terms of the Lennard-
Jones {12, 6] Lennard-Jones [28, 7], Buckingham [6-exp],
Stockmayer, and Kihara intermolecular potential energy
functions were published previously (12).

Because of the widespread use and acceptance of
American Petroleum Institute Research Project 44 selected
values for compressed gases (I), it is necessary to point
out that the new values for the compressibility factor of
methane differ significantly from the API RP 44 selection.
The differences found are considered excessive in light of
the accuracy of the present methods and results as docu-
mented in text and in previous publications (12, 13, 14).

EXPERIMENTAL PROCEDURES

Method. The compressibility apparatus and method were
described in detail in previous publications (3, 13, 14).
Briefly, the method was as follows. The methane sample was
weighed in a sealed thin-walled pycnometer that was
constructed of stainless steel and designed to serve as a
loosely fitting liner when placed inside the compressibility
bomb. The pycnometer terminated at one end in a small
borosilicate glass capillary tube, of known diameter and
length, which remained sealed during the assembly of the
bomb and the introduction of mercury into the evacuated
void space in the bomb and manifold of the compressibility
apparatus. Mercury was pumped into the void space
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from a thermostated quantitative-displacement, volu-
metric compressor. A null reading for the compressor
was determined as the setting at which the pressure exerted
by the sample inside the sealed pycnometer equaled the
mercury pressure in the void space. After the null setting
was made, the capillary tube was snapped off in a manner
described (3), allowing mercury under pressure to flow into
the pycnometer and compress the sample. For each com-
pressor setting, the volume occupied by the sample was
calculated from the volume of the pycnometer, the com-
pressor reading, the null, and the predetermined variation of
the volume of the entire system as a function of temperature
and pressure. Pressures were measured with a deadweight
gage that was calibrated against the vapor pressure of pure
carbon dioxide, 26,144.7 mm. of Hg at 0° (8). Corrections
for the variation of the effective piston area with pressure
were based on the values for a 0.05 in.” piston given by
Dadson (11). The temperature of the compressibility bomb,
which was controlled to =+ 0.001° in a thermostatically
controlled bath, was measured with a platinum resistance
thermometer that had been calibrated. by the National
Bureau of Standards in terms of the International Tempera-
ture Scale [T,° K. = ¢, °C. (Int., 1948) + 273.16]. The more
recent definition of the absolute scale, 0°C. = 273.15° K.
(24), was not used because much of the work was completed
before the scale was defined. Conversion from the Interna-
tional Temperature Scale, T, °K. (Int.), to the thermo-
dynamic temperature scale, T, ° K. (thermodynamic) was
made according to a relationship derived by Beattie (4).
Measurements of the ice-point resistance of the thermo-
meter, at the beginning and end of the experimental work,
showed no significant change.

The liter was chosen as the unit of volume in the equation
of state correlations, but the virial coefficients were cal-
culated in volume units of cubic centimeters (1 cc.® =
0.9999720 x 107 liter) to facilitate comparison with
theoretical values. Values of the gas constant used were
R = 0.0820544 liter atm. deg. !, mole ’, and R = 82.0567 cc.’
atm. deg. ' mole™ (22).

Sample Material. Methane of exceptionally high purity,
99.994 mole %, was prepared on a gas-chromatographic
fractometer with a 20/50 mesh charcoal column. The
starting material was a special batch of research grade
methane (purchased from Phillips Petroleum Co., Bartles-
ville, Okla.) that contained 0.16 mole % N, 0.02 mole %
0., 0.02 mole % CO;, and traces of water. No measurable
amounts of ethane or heavier hydrocarbons were present.
Before the methane was put through the fractometer, the
carbon dioxide and water were removed by passing the
sample in the vapor state over magnesium perchlorate and
Ascarite. The principal impurity after purification was
0.006 mole % N. as determined by gas-chromatographic
analysis. This amount of nitrogen was assumed in cal-
culating the effective molecular weight of the sample used,
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16.0437 grams/mole (based on atomic weights; H = 1.0080
and C = 12.011). The gas compressibility measurements
were made on two samples of the purified methane. Sample
I weighed 1.30690 + 0.00030 grams, equal to 0.081459
mole; and sample II weighed 1.67403 = 0.00030 grams,
equal to 0.104342 mole. Although the nitrogen impurity
was taken into account when the number of moles of sample
was calculated, its diluent effect on the compressibility of
methane was deemed insignificant.

Compressibility Measurements. Measurements were made
at even temperatures and densities to eliminate the necess-
ity for cross-plotting or smoothing to obtain final values.
The pressure, density, and temperature data in Table I are,
therefore, unsmoothed values that retain the full experi-
mental precision of the original measurements. At each
isotherm, beginning with the lowest temperature, the
pressure was measured first at the minimum density, 0.75
mole liter ', and thereafter at regular increments of 0.5 mole
liter ' beginning with the 1.0 mole liter™ point and
continuing to the highest density. After measurements were
completed at the highest density of an isotherm, the
pressure at the lowest density was remeasured to check for
leakage of mercury or decomposition of the sample. The
greatest difference between the initial and check values,
0.0033 atm., is within the calculated accuracy of the
method. The average difference for all isotherms, 0.0010
atm. or 0.0034% of the total pressure, is indicative of the
precision at low density.

Measurements on sample I covered the temperature
range 0° through 175°. At the 200° isotherm the cap of the
compressibility bomb cracked and sample I was lost. The
bomb was repaired and a new blank-run calibration was
carried out. Measurements on sample II, which covered
the range 150° through 350°, overlapped the measurements
onsample I at 156° and 175°.

The two samples were identical except for the amounts as
recorded in the section on material. The overall experi-
mental reproducibility established by the duplicate meas-
urements at 150° and 175° is about 3 of the estimated
maximum error. After measurements at 350° were com-
completed, sample II was cooled to 150° and the pressure
at 0.8 mole liter’ ' was redetermined. It was higher than
the initial pressure by only 0.0021 atm. This result was
taken as a positive indication that no leakage of mercury,
significant change in the apparatus, or decomposition of
sample II had occurred.

The calculated overall maximum uncertainty in the meas-
urements of pressure, volume, and temperature varies from
0.03% at the lowest temperature and pressure to 0.2% at
the highest temperature and pressure. The tabulated values
of pressure, Table I, were corrected for the partial pressure
of mercury vapor adjusted at each pressure for the Poynting
effect. [Selected values of the vapor pressure of mercury
and a description of the way the mercury vapor pressure
corrections were applied have been given (14).] A correction
for van der Waals interaction of mercury vapor with
methane was not made because it cannot be calculated
accurately at present. However, the compressibility meas-
urements are reported in enough detail that the corrections
can be made when a reliable method for calculating them
becomes available. Although the inaccuracy introduced by
neglecting the van der Waals interaction is very small, it
may not be negligible in the higher pressure and tempera-
ture regions of these measurements. Therefore, the overall
maximum uncertainty claimed for the compressibility meas-
urements at the highest temperature and pressure is
arbitrarily increased to 0.3%.

In addition to the indeterminate error caused by van der
Waals interaction between sample and mercury vapor, a
number of other small systematic errors are introduced
from such factors as the gas constant, atomic weights,
variations in Ci;/Cy; isotopic ratio and undetected im-
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purities when gas compressibilities are converted from
weight units to molar units. However, these errors and
the error in weight of sample were evaluated, as a group,
from the behaviors of the residual quantities B, and C. as
defined by:

B.= (PV/RT-1)V: B= p“j‘o (B.] (1)
C.=[(PV/RT-1)V-B]V; C= ;ij‘o [C.] @)

Appropriate corrections based on this evaluation were
applied to the measured values of pressure and density.
Although the effect of these very small systematic errors
could not be seen easily in B., preliminary plots of C. vs.
density showed clearly, on all isotherms, a negative
curvature below 7 mole liter ' and an inflection to positive
curvature above this point. Since a negative curvature
in C. would require negative values for the fifth and
possibly higher virial coefficients (an improbable occurr-
ence), the negative curvature was considered to be the
result of the small systematic errors that were introduced
into the tabular results during the conversion of the data
to a molar basis. In order to obtain C. lines that showed
no inflections, and had positive curvatures that decreased
to zero as zero density was approached, the preliminary
even densities first were adjusted upward by the factor
1.00023. The experimentally determined pressures then
were adjusted back to the even values of molar density
as they appear in Table I. The effect of applying these
corrections was to reduce the otherwise indeterminate
systematic errors and, consequently, to reduce by 0.023“¢
the overall experimental error in the molar values. A
Significant feature of the above correction that linked it
definitely to a true systematic error was its temperature
invariance—a single value of the factor sufficed for all
isotherms.

The compressibility data, corrected for systematic errors
as described above, are in Table I, and the compressibility
factors Z = PV/RT calculated from these data are
in Table II. The compressibility factor values are
based on the thermodynamic absolute temperatures, T, ° K.
(thermodynamic), listed in column 2, Table 1. Use of these
compressibility values with the International absolute tem-
peratures, T, ° K. (Int.}, would introduce an error varying
up to a few one-hundredths of a percent. These results
were used previously (12), to calculate a sensitive residual
quantity B., which was the basis for showing that the
present values are in excellent agreement with the results
of other investigators. The present values are compared
further, Figure 1, with data from the tables of American
Petroleum Institute Research Project 44 (/) and the results
of Michels and Nederbragt (18), and Schamp, Mason,
Richardson, and Altman (23) in terms of differences in the
compressibility factor. The deviations AZ = Z (present) — Z
(other) show that the present results are in poor agreement
with API RP 44 selected values but in excellent agreement
with values from the other two sources cited. Although
API RP 44 selected values were stated by Canjar (10) to be
in good agreement with the experimental values of Michels
and Nederbragt (18), the authors believe this statement
is in error.

VIRIAL COEFFICIENTS

The second, third, and fourth virial coefficients, B, C, and
D, in the equation

PV = RT(thermodynamic)(1+ B/ V+ C/ V' + D/ V®+ .. .),

were published previously (12). However, a redetermination
of correction factors obtained from the blank-run led to
small differences from the previously published values for
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Table il. Compressibility Factor, Z = PY/RT(Thermodynamic), of Methane

t°C. (T’I}‘;en}fﬁ)- Density, Mole Liter *
(Int.) dynamic) 0.75 0.8 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0 273.160 0.961416° 0.949229 0.925794 0.903811 0.883086 0.863635 0.845687 0.828977
25 298.153 0.969238 0.959541 0.941099 0.923882 0.907874 0.893080 0.879510 0.867242
30 303.152 0.970585 0.961423 0.943869 0.927473 0.912302 0.898516 0.885851 0.874266
50 323.151 0.975445 0.967945 0.953508 0.940368 0.928161 0.917175 0.907363 0.898720
75 348.153 0.980785 0.974958 0.963913 0.953886 0.945073 0.937274 0.930588 0.924950
100 373.160 0.985241 0.980864 0.972691 0.965671 0.959531 0.954435 0.950404 0.947429
125 398.170 0.989083 0.985866 0.980240 0.975423 0.971601 0.968942 0.967262 0.966582
150 423.183 0.992338 0.991970 0.990232 0.986712 0.984082 0.982383 0.981633 0.981983 0.983206
175 448.197 0.995207 0.995048 0.994054 0.992360 0.991538 0.991610 0.992659 0.994728 0.997884
200 473.213 0.997706 0.997373 0.997290 0.998130 0.999854 1.002465 1.005979 1.010547
225 498.229 1.000085 1.000336 1.001658 1.003949 1.006969 1.011033 1.015993 1.021963
250 523.245 1.002195 1.002972 1.005565 1.009134 1.013385 1.018627 1.024882 1.032113
275 548.260 1.004081 1.005336 1.009039 1.013822 1.019215 1.025580 1.032847 1.041231
300 573.274 1.005735 1.007418 1.012138 1.017842 1.024258 1.031588 1.039996 1.049290
325 598.285 1.007209 1.009351 1.014966 1.021645 1.028959 1.037365 1.046502 1.056722
350 623.294 1.008627 1.011136 1.017641 1.025136 1.033451 1.042460 1.052730 1.063698
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
0 273.160 0.813663 0.799630 0.787084 0.775541 0.765859 0.757932 0.750615 0.745291 0.741232
25 298.153 0.856214 0.846437 0.838067 0.830916 0.825066 0.820709 0.817787 0.816260 0.816203
30 303.152 0.864062 0.854968 0.847242 0.840852 0.835755 0.832100 0.829392 0.828896 0.829617
50 323.151 0.891453 0.885182 0.879949 0.876288 0.874333 0.873118 0.873260 0.875335 0.878709
75 348.153 0.920640 0.917443 0.915483 0.914896 0.915201 0.917295 0.920365 0.925080 0.931521
100 373.160 0.945563 0.944931 0.945393 0.947120 0.950022 0.954743 0.960252 0.967277 0.976159
125 398.170 0.967193 0.968728 0.971507 0.975198 0.980647 0.986942 0.995042 1.004485 1.015526
150 423.183 0.985547 0.989017 0.993638 0.999481 1.006602 1.015010 1.024750 1.036147 1.048716
175 448.197 1.001980 1.006871 1.013514 1.021062 1.029898 1.039859 1.051365 1.064559 1.078997
200 473.213 1.016192 1.022814 1.030825 1.039645 1.05021% 1.061652 1.074558 1.089355 1.104874
225 498.229 1.029045 1.037240 1.046282 1.056661 1.068204 1.081292 1.095498 1.111277 1.128445
250 523.245 1.040363 1.049792 1.060100 1.071770 1.084464 1.098663 1.114143 1.131047
275 548.260 1.050673 1.061048 1.072503 1.085386 1.099121 1.114371 1.130841
300 573.274 1.059567 1.071140 1.083505 1.097426 1.112171 1.128131
325 598.285 1.067917 1.080253 1.093616 1.108249 1.123825 1.140311
350 623.294 1.075758 1.088975 1.103177 1.118484 1.135151
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12,5
0 273.160 0.739215 0.738373 0.739638 0.742253 0.747658 0.754475 0.763987 0.775926
25 298.153 0.817884 0.821350 0.826281 0.833467 0.842341 0.853996 0.867156 0.883584
30 303.152 0.832006 0.835756 0.841517 0.849449 0.859486 0.871159 0.885698 0.902226
50 323.151 0.884011 0.890795 0.898993 0.909485 0.922172 0.937109 0.953931 0.973596
75 348.153 0.939547 0.949223 0.960576 0.973942 0.989398 1.006683 1.026769 1.050211
100 373.160 0.986416 0.999113 1.012891 1.028660 1.046943 1.067482 1.090330
125 398.170 1.027751 1.042521 1.058754 1.076821 1.097141
150 423.183 1.063176 1.079267 1.097588
175 448.197 1.095076 1.113331
200 473.213 1.122832

°8ix significant places to the right of the decimal point were tabu-
lated to retain all possible precision. The absolute accuracy varies

according to the estimated experimental uncertainties discussed
in the text.

both C and D above 275°C. Although the differences are
much less than the experimental uncertainty, the revised
values are presented, Table III, to preserve all possible
precision in the temperature dependency of the experi-
mental values. The precision of the experimental values
of B, as shown by correlations based on the Stockmayer
and Kihara potentials (12), is better than 0.1 cc. mole ™, but
the combined experimental and correlational errors can be
as great as 0.2 cc. mole™". Because errors in the lower virial
coefficients are propagated to and magnified in the higher
virial coefficients (17), the absolute accuracy of the values
for C and, particularly, D cannot be estimated easily.
However, because of the high precision of the compress-
ibility measurements, the temperature dependencies of both
C and D are useful in testing intermolecular potential
energy theory. For example, the experimental values of D
are positive and increase with increasing temperature as
predicted for a limited range of reduced temperature, 7/0,
for the theoretical Lennard-Jones [12, 6] potential cal-
culated by Boys and Shavitt (7), and Barker and
Monaghan (2).

CLOSED EQUATIONS OF STATE

Volumetric data for methane may be represented well
by either the Beattie-Bridgeman (BB) (5) or the Benedict-
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Table lil. Virial Coefficients of Methane

B, Cc. Cx107° Dx 107"
t,°C. Mole ™ Cm.* Mole™* Cm.’ Mole™®

0 -53.35 26.20 0.5
25 -42.82 23.70 0.5
30 -40.91 23.20 0.5
50 -34.23 21.50 1.3
75 -27.06 19.75 2.1
100 -21.00 18.34 2.7
125 -15.87 17.27 3.1
150 -11.40 16.40 3.5
175 -7.56 15.85 3.8
200 -4,16 15.14 4.3
225 -1.16 14.65 4.8
250 +1.49 14.20 5.2
275 3.89 13.85 5.5
300 5.98 13.60 5.7
325 7.88 13.45 5.8
350 9.66 13.30 5.9

Webb-Rubin (BWR) (6) equation of state, Table IV.
Parameters of these equations were evaluated by meth-
ods recommended (5, 6,). The choice of equation rests
with the nature of the application and the range of
temperatures and pressures that are involved. Differences
between observed and calculated pressures, and percentage
deviations based on parameters in Table IV, are included in
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Table I to provide a means for estimating the ranges in
which these parameters can be used best for interpolating
or for calculating thermodynamic functions. Because para-
meters of the BB and BWR equations for methane
published previously (5, 6, 9, 20) covered a smaller tem-

Table IV. Closed Equations of State for Methane.”
(Beattie-Bridgeman Equation’)
P=[RT(1-o/V}][V+B]-A 'V

A=Al -a/'V); B=B,1-b/V); e=¢ VT®
Ay=2.2152 B.=0.05159 c=15x 10*
a=0.02174 b=-0.02198 R =0.0820544

(Benedict-Webb-Rubin Equation®)
P=RT/V+ (B.RT - A,—Cy/TH/V*+ bRT - a)/ V* + aa V°
+[CA + v/ Viexp.(~ vy V)] V*T?

a =0.0435200 « = 0.000330000
By=0.0454625 b =0.00252033 v = 0.0105000
C,=0.0318382 x 10°  ¢=0.00358780 x 10° R =0.0820544

*Units: atm.; liter/mole; ° K. * Ref. 5. ‘Ref. 6.

A,=1.79894
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Figure 1. Comparison of compressibility factors
for methane.
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perature range than present values, the rather nominal
differences in the values obtained were expected.
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